Herticins A and B, New Sesquiterpenes from Hertia intermedia

by Shazia Yasmeen^a), Naheed Riaz^b), Amna Bibi^c), Nighat Afza^a), Abdul Malik^{*c}), and Rasool Bukhsh Tareen^d)

^a) Pharmaceutical Research Center, PCSIR Laboratories Complex Karachi, Karachi-75280, Pakistan

 ^b) Department of Chemistry, The Islamia University of Bhawalpur, Pakistan
 ^c) International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan
 (phone: +92-21-4824926; fax: +92-21-4819018; e-mail: abdul.malik@iccs.edu, shazrasheed@yahoo.com)
 ^d) Department of Botany, University of Baluchistan, Baluchistan, Pakistan

Herticins A (=(8 α H)-10 β -hydroxyeremophilenolide; **1**) and B (=(8 α H)-6 α ,10 β -dihydroxyeremophilenolide; **2**), two new sesquiterpenes, have been isolated from the AcOEt-soluble fraction of the MeOH extract of *Hertia intermedia* (whole plant). Their structures were assigned from ¹H- and ¹³C-NMR spectra (DEPT) and 2D-NMR analyses (COSY, NOESY, and HMBC experiments) in combination with HR-MS experiments and comparison with literature data of related compounds.

Introduction. – The genus *Hertia* belongs to the family Compositae, tribe Senecioneae. The twelve species of *Hertia* are distributed all over South and North Africa and South West Asia [1]. *Hertia intermedia* is also known as *Othonnopsis intermedia*. It is found in Baluchistan commonly in Quetta, Koeie, Chaman, Kanozai-Moorga, and Wazir. It is also found in Kurram and regions below Parachinar. These are small shrubs with pretty yellow flowers [2]. A literature survey revealed that no phytochemical or biological studies have so far been carried out on this plant. The methanolic extract of the whole plant of *H. intermedia* showed significant toxicity in the brine shrimp lethality test [3][4]. On further fractionation, major toxicity was observed in the AcOEt-soluble fraction which prompted us to investigate the chemical constituents of this fraction. As a result, we have isolated two new sesquiterpenes named herticins A (=(8 α H)-10 β -hydroxyeremophilenolide; 1) and B (=(8 α H)-6 α ,10 β -dihydroxyeremophilenolide; 2), respectively.

Results and Discussion. – The MeOH extract of the whole plant was divided into fractions soluble in hexane, AcOEt, BuOH, and H₂O. Column chromatography of the

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

AcOEt-soluble fraction provided two new eremophilenolide type sesquiterpenes named as herticins A (=(8 α H)-10 β -hydroxyeremophilenolide; **1**) and B (=(8 α H)-6 α ,10 β -dihydroxyeremophilenolide; **2**), respectively.

Herticin A (1) was obtained as a white solid. The IR spectrum exhibited the OH group (3607 and 3468 cm⁻¹) and α,β -unsaturated γ -lactone bands (1756 and 1645 cm⁻¹). The molecular formula of 1 was established as $C_{15}H_{22}O_3$ on the basis of HR-EI-MS showing an M^+ peak at m/z 250.3334 (calc. 250.3378). The molecular formula was confirmed by the ¹³C-NMR (BB and DEPT) spectra (*Table 1*), which showed 15 signals: three Me, five CH₂, two CH, and five quaternary C-atoms. The fragment peak at m/z 232 ($[M - H_2O]^+$) in the EI-MS spectrum revealed the presence of one OH group, which was confirmed by a quaternary C-atom at $\delta(C)$ 75.0. The Hatom appearing at $\delta(H)$ 5.07 (ddq, J=10.5, 4.8, 1.5, 1 H) showed coupling to the Catom at $\delta(C)$ 77.2 in the HMQC experiment, and was assigned to the secondary OH group integrated in a lactone ring. Three Me groups appeared in the ¹H-NMR spectrum at $\delta(H)$ 1.79 (d, J=1.5), 0.98 (s), and 0.81 (d, J=6.4). The Me group at $\delta(H)$ 1.79 showed interaction in the HMBC with C(11) (δ (C) 120.6), C(7) (δ (C) 161.2), and C(12) (δ (C) 175.1) suggesting a Me-substituted α,β -unsaturated lactone. One of the CH₂ groups appeared at δ (H) 2.13 (dd, J = 13.0, 4.8, 1 H) and 1.94 (dd, J = 13.0, 10.5, 1 H). Another CH₂ group gave rise to two *doublets* at δ (H) 2.64 (d, J = 13.8, 1 H) and 2.42 (d, J = 13.8, 1 H). In the HMBC, significant correlations were observed between the CH₂ group appearing at δ (H) 1.94 and 2.13 with the C-atoms C(5) (δ (C) 44.9), $C(10) (\delta(C) 75.0), C(8) (\delta(C) 77.2), and C(7) (\delta(C) 161.2); the Me group appearing at$ δ (H) 0.98 correlated with the C-atoms C(4) (δ (C) 33.5), C(6) (δ (C) 31.7), C(5) (δ (C) 44.9), and C(10) (δ (C) 75.0). The ¹H- and ¹³C-NMR data were comparable to the eremophilenolide class of sesquiterpenes [5-7]. A literature search revealed that the data is almost superimposible to 10β -hydroxyeremophilenolide [8]. The optical rotation observed for 1 ($[\alpha]_{\rm D} = +165$ (c = 0.470, CHCl₃)) was, however, different from that of 10 β -hydroxyeremophilenolide ([α]_D = -169 (c = 0.470, CHCl₃)), indicating that herticin A (1) is a stereoisomer of 10β -hydroxyeremophilenolide. The signal for Me attached to C(5) was shifted downfield, which indicated that the A/B ring system could not be *trans* fused, thus confirming a 10β -OH group [9]. The absence of a NOESY correlation between H-C(8) and the Me group attached to C(5) and the coupling constant of H-C(8) and H-C(9) [1] provided evidence for their relative *trans*-orientation (*Fig.*). Hence, herticin A (1) was assigned the structure $(8\alpha H)$ -10 β hydroxyeremophilenolide, *i.e.*, compound **1** ist the C(8)-epimer of the known natural product 10β -hydroxyeremophilenolide (see *Formulae*).

$\delta(\mathrm{H})$	$\delta(C)$	HMBC $(H \rightarrow C)$
$\overline{\text{CH}_2(1)}$ 1.47–1.51 (<i>m</i>), 1.71–1.74	(<i>m</i>) 36.5	C(3), C(5), C(9)
$CH_2(2)$ 1.30-1.36 (<i>m</i>), 1.57-1.61	(<i>m</i>) 22.3	C(10), C(4)
$CH_2(3)$ 1.17-1.21 (<i>m</i>), 1.38-1.41	(<i>m</i>) 29.7	C(1), C(4), C(5)
H-C(4) 1.42-1.45 (m)	33.5	C(2), C(10), C(6), C(15)
C(5)	44.9	
CH ₂ (6) 2.64 $(d, J = 13.8)$, 2.42 $(d, J = 13.8)$	J = 13.8) 31.7	C(4), C(5), C(7), C(8), C(10), C(11)
C(7)	161.2	
H-C(8) 5.07 (<i>ddq</i> , $J = 10.5$, 4.8, 1.5	5) 77.2	C(9), C(7), C(10)
$CH_2(9)$ 2.13 (<i>dd</i> , $J = 13.0, 4.8$), 1.9	94 (dd, J = 13.0, 10.5) 40.9	C(5), C(7), C(8), C(10)
C(10)	75.0	
C(11)	120.6	
C(12)	175.1	
Me(13) 1.79 $(d, J = 1.5)$	8.3	C(7), C(11), C(12)
Me(14) 0.98 (s)	14.7	C(4), C(5), C(6), C(10)
Me(15) 0.81 $(d, J = 6.4)$	16.0	C(3), C(4), C(5)

Table 1. ¹H- and ¹³C-NMR Data, and HMBC Correlations of Compound 1 (in CDCl₃; δ in ppm, J in Hz)

Herticin B (2) was also obtained as a white solid and exhibited bonds for OH (3529, 3419, and 3214 cm⁻¹) and an α,β -unsaturated γ -lactone (1756 and 1645 cm⁻¹). The broad band and DEPT ¹³C-NMR spectra displayed 15 signals: three Me, four CH₂, three CH, five quaternary C-atoms (*Table 2*). The molecular formula of **2** was established as C₁₅H₂₂O₄ from its HR-EI-MS showing an M^+ peak at m/z 266.3326 (calc. 266.3372). In the EI-MS, strong peaks at m/z 266 (M^+), 248 ([$M - H_2O$]⁺), and 230 ([$M - 2 H_2O$]⁺) were observed, suggesting the presence of two OH groups in the molecule. Beside the signal for an additional oxygenated C-atom appearing at $\delta(C)$ 71.3, the ¹H- and ¹³C-NMR spectra were nearly identical with those of compound **1**, which disclosed that compound **2** is a hydroxylated derivative of compound **1**. The H-

Table 2. ¹H- and ¹³C-NMR Data, and HMBC Correlations of Compound **2** (in CDCl₃; δ in ppm, J in Hz)

	$\delta(\mathrm{H})$	$\delta(C)$	HMBC $(H \rightarrow C)$
$CH_{2}(1)$	1.33 - 1.36(m), 1.73 - 1.77(m)	35.9	C(3), C(5), C(10), C(9)
$CH_2(2)$	1.21 - 1.24 (m), 1.57 - 1.61 (m)	22.1	C(10), C(4)
$CH_2(3)$	1.16 - 1.20 (m), 1.29 - 1.31 (m)	29.5	C(1), C(4), C(5)
H-C(4)	1.26 - 1.28 (m)	33.3	C(2), C(10), C(6), C(15)
C(5)		46.3	
H-C(6)	4.60 (s)	71.3	C(4), C(5), C(7), C(8), C(10), C(11), C(14)
C(7)		160.7	
H-C(8)	5.31 (ddq, J = 10.5, 4.7, 1.4)	76.1	C(7), C(9),C(10)
$CH_{2}(9)$	2.25 (dd, J = 13.2, 4.7),	41.4	C(5), C(7), C(8), C(10)
	1.98 (dd, J = 13.2, 10.5)		
C(10)		76.0	
C(11)		122.0	
C(12)		174.6	
Me(13)	1.85 (d, J = 1.4)	8.6	C(7), C(11), C(12)
Me(14)	1.20 (s)	10.5	C(4), C(5), C(6), C(10)
Me(15)	0.81 (d, J = 5.6)	16.0	C(3), C(5)

406

atom appearing as a *ddq* at $\delta(H)$ 5.31 (J = 10.5, 4.7, 1.4, 1 H) was assigned to the Hatom α to the lactone O-atom. The H-atom of a secondary OH group at $\delta(H)$ 4.60 appeared as a *singlet* in the ¹H-NMR spectrum. In the HMBC, it showed correlations with C(11) ($\delta(C)$ 122.0), C(7) ($\delta(C)$ 160.7), C(8) ($\delta(C)$ 76.1), C(5) ($\delta(C)$ 46.3), and C(14) ($\delta(C)$ 10.5), allowing us to place this OH group at C(6). The ¹H- and ¹³C-NMR data of compound **2** showed similarity to that of 6β ,10 β -dihydroxyeremophilenolide [10]. The two compounds differ in their melting point and optical rotation. Thus, the two compounds differ in their configuration. The absence of a NOESY correlation between H–C(8) and the Me group attached to C(5) and the coupling constant of H–C(8) as compound **1**. The downfield chemical shift ($\delta(H)$ 1.20) of the Me group attached to C(5) confirmed a *cis*-fused A/B ring system. The absence of a NOESY interaction between H–C(6) and H–C(8) allowed us to assign α orientation for the OH group at C(6). Thus herticin B (**2**) was assigned to be $(8\alpha H)$ - 6α ,10 β -dihydroxyeremophilenolide.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 230–400 mesh; Merck). Thin-layer chromatography (TLC): SiO₂ 60 F_{254} plates (Merck). Optical rotations: Jasco DIP-360 digital polarimeter. IR spectra: Jasco 302-A spectrophotometer, in CHCl₃ or MeOH solns.; in cm⁻¹. NMR spectra: Bruker instrument; δ in ppm, J in Hz. EI- and HR-EI-MS: Jeol JMS-DA-500 mass spectrometers; in m/z (rel. %).

Plant Material. The whole plant material of *H. intermedia* BOISS was collected from Baluchistan (Pakistan) in May 2006 and identified by *R. B. T.*, Plant Taxonomist, Department of Botany, University of Baluchistan, where a voucher specimen (HI-36-06) has been deposited.

Extraction and Isolation. The air dried whole plant (28 kg) was exhaustively extracted with MeOH $(3 \times 50 \text{ l})$ at r.t. The combined MeOH extracts were concentrated, and the residue (750 g) was divided into hexane (135 g), AcOEt (150 g), BuOH (68 g), and H₂O (38 g) soluble fractions. The AcOEt soluble fraction was subjected to CC (SiO₂; hexane/AcOEt, AcOEt, AcOEt/MeOH, of increasing polarity). The fractions from hexane/AcOEt 75 :25 were combined and subjected to CC (SiO₂; hexane/AcOEt 85 :15) to yield **1** (13 mg) and (**2**) (9 mg) from the top and tail fractions, resp.

Herticin A (=(8*aH*)-10β-Hydroxyeremophilenolide; (4aR,5S,8aS,9aR)-4*a*,5,6,7,8,8a,9,9a-Octahydro-8a-hydroxy-3,4a,5-trimethylnaphtho[2,3-b]furan-2(4H)-one; **1**). White solid. M.p. 184–186°. $[\alpha]_D^{26} = +165$ (c = 0.470, CHCl₃). IR (KBr): 3607, 3468, 1756, 1645. ¹H- and ¹³C- NMR: *Table 1*. EI-MS: 250 (3, *M*⁺), 232 (39, $[M - H_2O]^+$), 126 (34), 125 (72), 97 (70). HR-EI-MS: 250.3334 (*M*⁺, C₁₅H₂₂O⁺₃; calc. 250.3378).

Herticin B (=(8α*H*)-6α,10β-Dihydroxyeremophilenolide; (4S,4aS,5S,8aS,9aR)-4a,5,6,7,8,8a,9,9a-Octahydro-4,8a-dihydroxy-3,4a,5-trimethylnaphtho[2,3-b]furan-2(4H)-one; **2**). White solid. M.p. 79– 83°. [a]_D²⁶ = +104 (c = 0.06, MeOH). IR (KBr): 3529, 3419, 3214, 1756, 1645. ¹H- and ¹³C- NMR: *Table 1*. EI-MS: 266 (3, *M*⁺), 248 (6, [*M* – H₂O]⁺), 230 (3, [*M* – 2 H₂O]⁺), 141 (25), 123 (55), 97 (100), 55 (80). HR-EI-MS: 266.3326 (*M*⁺, C₁₅H₂₂O₃⁺; calc. 266.3372).

REFERENCES

- [1] J. Jakupovic, F. Bohlmann, M. Grenz, *Phytochemistry* **1989**, *28*, 3231.
- [2] S. I. Ali, Y. J. Nasir, 'Flora of Pakistan', Fakhri printing press, Karachi, 1972, p. 750.
- [3] J. L. McLaughlin, C. J. Chang, D. L. Smith, Atta-Ur-Rahman, 'Studies in Natural Products Chemistry', Elsevier, Amsterdam, 1997, vol. 9, p. 383.

- [4] B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, J. L. McLaughlin, *Planta Med.* 1982, 45, 31.
- [5] S. Zhang, G. Zhao, R. Li, G. Lin, Phytochemistry 1998, 48, 519.
- [6] P. Aclinou, G. Massiot, Phytochemistry 1993, 34, 859.
- [7] Y. Yaoita, M. Kikuchi, Chem. Pharm. Bull. 1994, 42, 1944.
- [8] J. Massiot, J.-M. Nuzillard, L. Le Men-Olivier, P. Aclinou, A. Benkouider, A. Khelifa, *Phytochemistry* **1990**, *29*, 2207.
- [9] L. H. Zalkow, L. T. Gelbaum, D. Van Derveer, J. Chem. Soc., Perkin Trans. 1 1979, 1542.
- [10] J.-Q. Xu, Y.-S. Li, Y.-M. Li, S.-H. Jiang, C.-H. Tan, D.-Y. Zhu, Planta Med. 2006, 72, 567.

Received July 24, 2008